Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378041%3A_____%2F20%3A00539300" target="_blank" >RIV/68378041:_____/20:00539300 - isvavai.cz</a>
Result on the web
<a href="https://linkinghub.elsevier.com/retrieve/pii/S0002929720302366" target="_blank" >https://linkinghub.elsevier.com/retrieve/pii/S0002929720302366</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ajhg.2020.07.006" target="_blank" >10.1016/j.ajhg.2020.07.006</a>
Alternative languages
Result language
angličtina
Original language name
Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk
Original language description
Accurate colorectal cancer (CRC) risk prediction models are critical for identifying individuals at low and high risk of developing CRC, as they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group) and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction. In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide association studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the PRS in three ways, using (1) 140 previously identified and validated CRC loci, (2) SNP selection based on linkage disequilibrium (LD) clumping followed by machine-learning approaches, and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC = 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the PRS of the 140 known variants identified from GWASs had the lowest AUC (AUC = 0.629). Based on the LDpred-derived PRS, we are able to identify 30% of individuals without a family history as having risk for CRC similar to those with a family history of CRC, whereas the PRS based on known GWAS variants identified only top 10% as having a similar relative risk. About 90% of these individuals have no family history and would have been considered average risk under current screening guidelines, but might benefit from earlier screening. The developed PRS offers a way for risk-stratified CRC screening and other targeted interventions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30302 - Epidemiology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
AMERICAN JOURNAL OF HUMAN GENETICS
ISSN
1537-6605
e-ISSN
—
Volume of the periodical
107
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
432-444
UT code for WoS article
000565899700005
EID of the result in the Scopus database
2-s2.0-85089998056