All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Emissions from modern engines induce distinct effects in human olfactory mucosa cells, depending on fuel and aftertreatment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378041%3A_____%2F23%3A00581757" target="_blank" >RIV/68378041:_____/23:00581757 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0048969723056632?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969723056632?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2023.167038" target="_blank" >10.1016/j.scitotenv.2023.167038</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Emissions from modern engines induce distinct effects in human olfactory mucosa cells, depending on fuel and aftertreatment

  • Original language description

    Ultrafine particles (UFP) with a diameter of <= 0.1 mu m, are contributors to ambient air pollution and derived mainly from traffic emissions, yet their health effects remain poorly characterized. The olfactory mucosa (OM) is located at the rooftop of the nasal cavity and directly exposed to both the environment and the brain. Mounting evidence suggests that pollutant particles affect the brain through the olfactory tract, however, the exact cellular mechanisms of how the OM responds to air pollutants remain poorly known. Here we show that the responses of primary human OM cells are altered upon exposure to UFPs and that different fuels and engines elicit different adverse effects. We used UFPs collected from exhausts of a heavy-duty-engine run with renewable diesel (A0) and fossil diesel (A20), and from a modern diesel vehicle run with renewable diesel (Euro6) and compared their health effects on the OM cells by assessing cellular processes on the functional and transcriptomic levels. Quantification revealed all samples as UFPs with the majority of particles being <= 0.1 mu m by an aerodynamic diameter. Exposure to A0 and A20 induced substantial alterations in processes associated with inflammatory response, xenobiotic metabolism, olfactory signaling, and epithelial integrity. Euro6 caused only negligible changes, demonstrating the efficacy of aftertreatment devices. Furthermore, when compared to A20, A0 elicited less pronounced effects on OM cells, suggesting renewable diesel induces less adverse effects in OM cells. Prior studies and these results suggest that PAHs may disturb the inflammatory process and xenobiotic metabolism in the OM and that UFPs might mediate harmful effects on the brain through the olfactory route. This study pro-vides important information on the adverse effects of UFPs in a human-based in vitro model, therefore providing new insight to form the basis for mitigation and preventive actions against the possible toxicological impairments caused by UFP exposure.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30304 - Public and environmental health

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Science of the Total Environment

  • ISSN

    0048-9697

  • e-ISSN

    1879-1026

  • Volume of the periodical

    905

  • Issue of the periodical within the volume

    dec.

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    17

  • Pages from-to

    167038

  • UT code for WoS article

    001081870800001

  • EID of the result in the Scopus database

    2-s2.0-85171629239