QSAR – Modelling of Quantitative Relations between Structure and Activity of Chemical Compounds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F17%3A00502626" target="_blank" >RIV/68378050:_____/17:00502626 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
čeština
Original language name
QSAR – Modelování kvantitativních vztahů mezi strukturou a aktivitou chemických látek
Original language description
Kvantitativní modelování vztahů mezi strukturou a aktivitou (QSAR) je jednou z nejpopulárnějších technik virtuálního screeningu, která se používá k predikci aktivity sloučeniny směrem k biologickému cíli. Zatímco modely klasifikace QSAR jsou schopny předvídat, zda je sloučenina aktivní nebo neaktivní (třída) směrem k cíli, regresní modely se snaží předpovědět přesnou hodnotu aktivity. Pro zjištění vztahu mezi strukturou a aktivitou sloučeniny se používají běžné metody strojového učení (např. Podpůrné vektorové stroje, náhodný les, neuronové sítě atd.) Spolu s různými typy deskriptorů sloučenin (např. Fyzikálně-chemické vlastnosti, strukturální klíče, binární otisky prstů atd.). Modely QSAR jsou obecně velmi rychlé a pokud je použit správný přístup k jejich validaci a použitelnosti domény nastavení, také spolehlivé. Staly se běžnou součástí pracovních postupů pro výpočet léků používaných k detekci nových kandidátů na léky, objasnění jejich vedlejších / nepříznivých účinků nebo posouzení jejich potenciálních rizik toxicity.
Czech name
QSAR – Modelování kvantitativních vztahů mezi strukturou a aktivitou chemických látek
Czech description
Kvantitativní modelování vztahů mezi strukturou a aktivitou (QSAR) je jednou z nejpopulárnějších technik virtuálního screeningu, která se používá k predikci aktivity sloučeniny směrem k biologickému cíli. Zatímco modely klasifikace QSAR jsou schopny předvídat, zda je sloučenina aktivní nebo neaktivní (třída) směrem k cíli, regresní modely se snaží předpovědět přesnou hodnotu aktivity. Pro zjištění vztahu mezi strukturou a aktivitou sloučeniny se používají běžné metody strojového učení (např. Podpůrné vektorové stroje, náhodný les, neuronové sítě atd.) Spolu s různými typy deskriptorů sloučenin (např. Fyzikálně-chemické vlastnosti, strukturální klíče, binární otisky prstů atd.). Modely QSAR jsou obecně velmi rychlé a pokud je použit správný přístup k jejich validaci a použitelnosti domény nastavení, také spolehlivé. Staly se běžnou součástí pracovních postupů pro výpočet léků používaných k detekci nových kandidátů na léky, objasnění jejich vedlejších / nepříznivých účinků nebo posouzení jejich potenciálních rizik toxicity.
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LO1220" target="_blank" >LO1220: CZ-OPENSCREEN: National infrastructure for chemical biology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemické listy
ISSN
1213-7103
e-ISSN
—
Volume of the periodical
111
Issue of the periodical within the volume
11
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
7
Pages from-to
747-753
UT code for WoS article
000418342800007
EID of the result in the Scopus database
—