Finding semantic patterns in omics data using concept rule learning with an ontology-based refinement operator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F20%3A00539595" target="_blank" >RIV/68378050:_____/20:00539595 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/20:00342306
Result on the web
<a href="https://biodatamining.biomedcentral.com/articles/10.1186/s13040-020-00219-6" target="_blank" >https://biodatamining.biomedcentral.com/articles/10.1186/s13040-020-00219-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s13040-020-00219-6" target="_blank" >10.1186/s13040-020-00219-6</a>
Alternative languages
Result language
angličtina
Original language name
Finding semantic patterns in omics data using concept rule learning with an ontology-based refinement operator
Original language description
Background: Identification of non-trivial and meaningful patterns in omics data is one of the most important biological tasks. The patterns help to better understand biological systems and interpret experimental outcomes. A well-established method serving to explain such biological data is Gene Set Enrichment Analysis. However, this type of analysis is restricted to a specific type of evaluation. ing from details, the analyst provides a sorted list of genes and ontological annotations of the individual genes, the method outputs a subset of ontological terms enriched in the gene list. Here, in contrary to enrichment analysis, we introduce a new tool/framework that allows for the induction of more complex patterns of 2-dimensional binary omics data. This extension allows to discover and describe semantically coherent biclusters.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
BioData Mining
ISSN
1756-0381
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
22
Pages from-to
13
UT code for WoS article
000566165300001
EID of the result in the Scopus database
—