All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Molecular insight into the mechanism of nuclear PIP2 regulation of RNA Polymerase II transcription

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F21%3A00555847" target="_blank" >RIV/68378050:_____/21:00555847 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378050:_____/21:00555848

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Molecular insight into the mechanism of nuclear PIP2 regulation of RNA Polymerase II transcription

  • Original language description

    Specific nuclear sub-compartments that are regions of fundamental processes such as gene expression or DNA repair, contain phosphoinositides (PIPs). PIPs potentially represent signals for the localization of specific proteins into different nuclear functional domains. We performed limited proteolysis followed by label-free quantitative mass spectrometry and identified nuclear protein effectors of phosphatidylinositol 4,5-bisphosphate (PIP2). We identified 515 proteins with PIP2-binding capacity. Gene ontology analysis revealed that these proteins are involved in regulation of Pol II, mRNA splicing, transport and cell cycle. They localize to non-membrane bound organelles and are connected to actin nucleoskeleton. We provided the evidence for presence of MPRIP, an F‐actin‐binding protein in the cell nucleus. The MPRIP protein binds to PIP2 and localizes to the nuclear speckles and nuclear lipid islets which are known to be involved in transcription. We identified MPRIP as a component of Pol2/Nuclear Myosin 1 complex and showed that MPRIP forms phase‐separated condensates which are able to bind nuclear F‐actin fibers. We propose a model where the PIP2/MPRIP association might contribute to the regulation of Pol2 transcription via phase separation and nuclear actin polymerization.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10601 - Cell biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů