All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F12%3A00386798" target="_blank" >RIV/68378271:_____/12:00386798 - isvavai.cz</a>

  • Alternative codes found

    RIV/61389021:_____/12:00386798 RIV/68407700:21340/12:00194243

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4714660" target="_blank" >http://dx.doi.org/10.1063/1.4714660</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4714660" target="_blank" >10.1063/1.4714660</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration

  • Original language description

    Acceleration of dense matter to high velocities is of high importance for high energy density physics, inertial confinement fusion, or space research. The acceleration schemes employed so far are capable of accelerating dense microprojectiles to velocities approaching 1000 km/s; however, the energetic efficiency of acceleration is low. Here, we propose and demonstrate a highly efficient scheme of acceleration of dense matter in which a projectile placed in a cavity is irradiated by a laser beam introduced into the cavity through a hole and then accelerated in a guiding channel by the pressure of a hot plasma produced in the cavity by the laser beam or by the photon pressure of the ultra-intense laser radiation trapped in the cavity. We show that the acceleration efficiency in this scheme can be much higher than that achieved so far and that sub-relativisitic projectile velocities are feasible in the radiation pressure regime.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BL - Plasma physics and discharge through gases

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physics of Plasmas

  • ISSN

    1070-664X

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    1-8

  • UT code for WoS article

    000304831100032

  • EID of the result in the Scopus database