A note on conical solutions in 3D Vasiliev theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F13%3A00425694" target="_blank" >RIV/68378271:_____/13:00425694 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/JHEP05(2013)052" target="_blank" >http://dx.doi.org/10.1007/JHEP05(2013)052</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/JHEP05(2013)052" target="_blank" >10.1007/JHEP05(2013)052</a>
Alternative languages
Result language
angličtina
Original language name
A note on conical solutions in 3D Vasiliev theory
Original language description
We construct a class of smooth solutions in three-dimensional Vasiliev higher spin theories based on the gauge algebra hs[?]. These solutions naturally generalize the previously constructed conical defect solutions in higher spin theories with sl(N) gauge algebra, to which they reduce when ? is taken to be equal to N. We provide evidence for their identification with specific primary states of the W ()[?] algebra in a particular classical limit. In terms of the Gaberdiel-Gopakumar-?t Hooft limit of theW ( )N( ) minimal models, this limit corresponds to a regime where the ?t Hooft coupling becomes large.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP203%2F11%2F1388" target="_blank" >GAP203/11/1388: Black hole microstates and chronology protection in string theory</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of High Energy Physics
ISSN
1029-8479
e-ISSN
—
Volume of the periodical
2013
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
1-23
UT code for WoS article
000321374400052
EID of the result in the Scopus database
—