All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CsI:Tl+,Yb2+: ultra-high light yield scintillator with reduced afterglow

Result description

The afterglow problem has been preventing CsI:Tl single crystal scintillators from being used for applications in the field of computer tomography and high-speed imaging. We show that Yb2+ codoping in CsI:Tl can reduce it at least by one order of magnitude after 50 ms from X-ray cut-off compared to ordinary CsI:Tl. After optimization of the Yb2+ and Tl+ concentrations, the doubly doped CsI:Tl,Yb crystal exhibits an ultra-high light yield of 90 000 6000 photons MeV1, energy resolution 7.9%@511 keV and low afterglow level of about 0.035% at 80 ms. Simultaneous improvement in afterglow, light yield and energy resolution in CsI:Tl-based scintillators paves the way to its application in computer tomography and high-speed imaging. The physical mechanism androle of ytterbium ions in afterglow suppression are proposed.

Keywords

scintillatorCsI:Tb, Yb codopingafterglow

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    CsI:Tl+,Yb2+: ultra-high light yield scintillator with reduced afterglow

  • Original language description

    The afterglow problem has been preventing CsI:Tl single crystal scintillators from being used for applications in the field of computer tomography and high-speed imaging. We show that Yb2+ codoping in CsI:Tl can reduce it at least by one order of magnitude after 50 ms from X-ray cut-off compared to ordinary CsI:Tl. After optimization of the Yb2+ and Tl+ concentrations, the doubly doped CsI:Tl,Yb crystal exhibits an ultra-high light yield of 90 000 6000 photons MeV1, energy resolution 7.9%@511 keV and low afterglow level of about 0.035% at 80 ms. Simultaneous improvement in afterglow, light yield and energy resolution in CsI:Tl-based scintillators paves the way to its application in computer tomography and high-speed imaging. The physical mechanism androle of ytterbium ions in afterglow suppression are proposed.

  • Czech name

  • Czech description

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BM - Solid-state physics and magnetism

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    CrystEngComm

  • ISSN

    1466-8033

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    6

  • Pages from-to

    3312-3317

  • UT code for WoS article

    000333580100010

  • EID of the result in the Scopus database