All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Co and In doped Ni-Mn-Ga magnetic shape memory alloys: a thorough structural, magnetic and magnetocaloric study

Result description

In Ni-Mn-Ga ferromagnetic shape memory alloys, Co-doping plays a major role in determining a peculiar phase diagram where, besides a change in the critical temperatures, a change of number, order and nature of phase transitions (e.g., from ferromagneticto paramagnetic or from paramagnetic to ferromagnetic, on heating) can be obtained, together with a change in the giant magnetocaloric effect from direct to inverse. Here we present a thorough study of the intrinsic magnetic and structural properties, including their dependence on hydrostatic pressure, that are at the basis of the multifunctional behavior of Co and In-doped alloys. We study in depth their magnetocaloric properties, taking advantage of complementary calorimetric and magnetic techniques,and show that if a proper measurement protocol is adopted they all merge to the same values, even in case of first order transitions.

Keywords

magnetic shape memory materialsmagnetocaloric effectmultifunctional Heusler alloys

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Co and In doped Ni-Mn-Ga magnetic shape memory alloys: a thorough structural, magnetic and magnetocaloric study

  • Original language description

    In Ni-Mn-Ga ferromagnetic shape memory alloys, Co-doping plays a major role in determining a peculiar phase diagram where, besides a change in the critical temperatures, a change of number, order and nature of phase transitions (e.g., from ferromagneticto paramagnetic or from paramagnetic to ferromagnetic, on heating) can be obtained, together with a change in the giant magnetocaloric effect from direct to inverse. Here we present a thorough study of the intrinsic magnetic and structural properties, including their dependence on hydrostatic pressure, that are at the basis of the multifunctional behavior of Co and In-doped alloys. We study in depth their magnetocaloric properties, taking advantage of complementary calorimetric and magnetic techniques,and show that if a proper measurement protocol is adopted they all merge to the same values, even in case of first order transitions.

  • Czech name

  • Czech description

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BM - Solid-state physics and magnetism

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Entropy

  • ISSN

    1099-4300

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    19

  • Pages from-to

    2204-2222

  • UT code for WoS article

    000335001500021

  • EID of the result in the Scopus database

Basic information

Result type

Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

Jx

CEP

BM - Solid-state physics and magnetism

Year of implementation

2014