Self-referenced ultra-broadband transient terahertz spectroscopy using air-photonics
Result description
Terahertz (THz) air-photonics employs nonlinear interactions of ultrashort laser pulses in air to generate and detect THz pulses. As air is virtually non-dispersive, the optical-THz phase matching condition is automatically met, thus permitting the generation and detection of ultra-broadband THz pulses covering the entire THz spectral range without any gaps. Air-photonics naturally offers unique opportunities for ultra-broadband transient THz spectroscopy, yet many critical challenges inherent to this technique must first be resolved. Here, we present explicit guidelines for ultra-broadband transient THz spectroscopy with air-photonics, including a novel method for self-referenced signal acquisition minimizing the phase error, and the numerically-accurate approach to the transient reflectance data analysis.
Keywords
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Self-referenced ultra-broadband transient terahertz spectroscopy using air-photonics
Original language description
Terahertz (THz) air-photonics employs nonlinear interactions of ultrashort laser pulses in air to generate and detect THz pulses. As air is virtually non-dispersive, the optical-THz phase matching condition is automatically met, thus permitting the generation and detection of ultra-broadband THz pulses covering the entire THz spectral range without any gaps. Air-photonics naturally offers unique opportunities for ultra-broadband transient THz spectroscopy, yet many critical challenges inherent to this technique must first be resolved. Here, we present explicit guidelines for ultra-broadband transient THz spectroscopy with air-photonics, including a novel method for self-referenced signal acquisition minimizing the phase error, and the numerically-accurate approach to the transient reflectance data analysis.
Czech name
—
Czech description
—
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BH - Optics, masers and lasers
OECD FORD branch
—
Result continuities
Project
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Optics Express
ISSN
1094-4087
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
10157-10171
UT code for WoS article
000375259600096
EID of the result in the Scopus database
2-s2.0-84965053865
Basic information
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
BH - Optics, masers and lasers
Year of implementation
2016