All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Uptake and intracellular accumulation of diamond nanoparticles – a metabolic and cytotoxic study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F17%3A00477508" target="_blank" >RIV/68378271:_____/17:00477508 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985823:_____/17:00477508

  • Result on the web

    <a href="http://dx.doi.org/10.3762/bjnano.8.165" target="_blank" >http://dx.doi.org/10.3762/bjnano.8.165</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3762/bjnano.8.165" target="_blank" >10.3762/bjnano.8.165</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Uptake and intracellular accumulation of diamond nanoparticles – a metabolic and cytotoxic study

  • Original language description

    Diamond nanoparticles, known as nanodiamonds (NDs), possess several medically significant properties. Having a tailorable and easily accessible surface gives them great potential for use in sensing and imaging applications and as a component of cell growth scaffolds. In this work we investigate in vitro interactions of human osteoblast-like SAOS-2 cells with four different groups of NDs, namely high-pressure high-temperature (HPHT) NDs (diameter 18-210 nm, oxygen-terminated), photoluminescent HPHT NDs (diameter 40 nm, oxygen-terminated), detonation NDs (diameter 5 nm, H-terminated), and the same detonation NDs further oxidized by annealing at 450 degrees C. The influence of the NDs on cell viability and cell count was measured by the mitochondrial metabolic activity test and by counting cells with stained nuclei. The interaction of NDs with cells was monitored by phase contrast live-cell imaging in real time. For both types of oxygen-terminated HPHT NDs, the cell viability and the cell number remained almost the same for concentrations up to 100 mu g/mL within the whole range of ND diameters tested. The uptake of hydrogen-terminated detonation NDs caused the viability and the cell number to decrease by 80-85%. The oxidation of the NDs hindered the decrease, but on day 7, a further decrease was observed. While the O-terminated NDs showed mechanical obstruction of cells by agglomerates preventing cell adhesion, migration and division, the H-terminated detonation NDs exhibited rapid penetration into the cells from the beginning of the cultivation period, and also rapid cell congestion and a rapid reduction in viability. These findings are discussed with reference to relevant properties of NDs such as surface chemical bonds, zeta potential and nanoparticle types.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30404 - Biomaterials (as related to medical implants, devices, sensors)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Beilstein Journal of Nanotechnology

  • ISSN

    2190-4286

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    Aug 10

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    9

  • Pages from-to

    1649-1657

  • UT code for WoS article

    000407829000001

  • EID of the result in the Scopus database

    2-s2.0-85028543247