Two-phase dielectric polar structures in 0.1NBT-0.6ST-0.3PT solid solutions
Result description
In this work we address the peculiarities of the macroscopic responses in ternary 0.1Na0.5Bi0.5TiO(3)0.6SrTiO(3)-0.3PbTiO(3) (0.1NBT-0.6ST-0.3PT) solid solutions. These solid solutions exhibit a spontaneous first order relaxor to normal ferroelectric phase transition. The phase transition is accompanied by a broad dielectric relaxation which expands over 10 orders of magnitude in frequency just above the phase transition temperature. The temperature dependence of polarization shows that non-zero net polarization persists above the phase transition temperature. Below the phase transition temperature, it is not possible to describe the temperature dependence of polarization with a power law function which is valid in normal ferroelectrics. The piezoresponse force microscopy studies reveal that 0.1NBT-0.6ST-0.3PT solids solutions display several local polarization patterns which arise due to the bimodal distribution of grains in the ceramics.
Keywords
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Two-phase dielectric polar structures in 0.1NBT-0.6ST-0.3PT solid solutions
Original language description
In this work we address the peculiarities of the macroscopic responses in ternary 0.1Na0.5Bi0.5TiO(3)0.6SrTiO(3)-0.3PbTiO(3) (0.1NBT-0.6ST-0.3PT) solid solutions. These solid solutions exhibit a spontaneous first order relaxor to normal ferroelectric phase transition. The phase transition is accompanied by a broad dielectric relaxation which expands over 10 orders of magnitude in frequency just above the phase transition temperature. The temperature dependence of polarization shows that non-zero net polarization persists above the phase transition temperature. Below the phase transition temperature, it is not possible to describe the temperature dependence of polarization with a power law function which is valid in normal ferroelectrics. The piezoresponse force microscopy studies reveal that 0.1NBT-0.6ST-0.3PT solids solutions display several local polarization patterns which arise due to the bimodal distribution of grains in the ceramics.
Czech name
—
Czech description
—
Classification
Type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
LD15014: Piezoelectrics and multiferroics for future electronics
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Materialia
ISSN
1359-6454
e-ISSN
—
Volume of the periodical
153
Issue of the periodical within the volume
Jul
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
117-125
UT code for WoS article
000437391500012
EID of the result in the Scopus database
2-s2.0-85046513950
Basic information
Result type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
OECD FORD
Condensed matter physics (including formerly solid state physics, supercond.)
Year of implementation
2018