All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Large anomalous Nernst effect in thin films of the Weyl semimetal Co2MnGa

Result description

The magneto-thermoelectric properties of Heusler compound thin films are very diverse. Here, we discuss the anomalous Nernst response of Co2MnGa thin films. We systematically study the anomalous Nernst coefficient as a function of temperature, and we show that unlike the anomalous Hall effect, the anomalous Nernst effect in Co2MnGa strongly varies with temperature. We exploit the on-chip thermometry technique to quantify the thermal gradient, which enables us to directly evaluate the anomalous Nernst coefficient. We compare these results to a reference CoFeB thin film. We show that the 50-nm-thick Co2MnGa films exhibit a large anomalous Nernst effect of −2 μV/K at 300 K, whereas the 10-nm-thick Co2MnGa film exhibits a significantly smaller anomalous Nernst coefficient despite having similar volume magnetizations.

Keywords

magneto-thermoelectric propertiesNernst effectHall effect

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Large anomalous Nernst effect in thin films of the Weyl semimetal Co2MnGa

  • Original language description

    The magneto-thermoelectric properties of Heusler compound thin films are very diverse. Here, we discuss the anomalous Nernst response of Co2MnGa thin films. We systematically study the anomalous Nernst coefficient as a function of temperature, and we show that unlike the anomalous Hall effect, the anomalous Nernst effect in Co2MnGa strongly varies with temperature. We exploit the on-chip thermometry technique to quantify the thermal gradient, which enables us to directly evaluate the anomalous Nernst coefficient. We compare these results to a reference CoFeB thin film. We show that the 50-nm-thick Co2MnGa films exhibit a large anomalous Nernst effect of −2 μV/K at 300 K, whereas the 10-nm-thick Co2MnGa film exhibits a significantly smaller anomalous Nernst coefficient despite having similar volume magnetizations.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Physics Letters

  • ISSN

    0003-6951

  • e-ISSN

  • Volume of the periodical

    113

  • Issue of the periodical within the volume

    21

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    5

  • Pages from-to

    1-5

  • UT code for WoS article

    000450896600015

  • EID of the result in the Scopus database

    2-s2.0-85056815630

Basic information

Result type

Jimp - Article in a specialist periodical, which is included in the Web of Science database

Jimp

OECD FORD

Condensed matter physics (including formerly solid state physics, supercond.)

Year of implementation

2018