All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of high temperature on the microstructural evolution of fiber reinforced geopolymer composite

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F19%3A00512072" target="_blank" >RIV/68378271:_____/19:00512072 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0302282" target="_blank" >http://hdl.handle.net/11104/0302282</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.heliyon.2019.e01779" target="_blank" >10.1016/j.heliyon.2019.e01779</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of high temperature on the microstructural evolution of fiber reinforced geopolymer composite

  • Original language description

    Physical evolution of geopolymeric minerals derived from metakaolin and synthesized with sodium, mixed-alkali and potassium activating solutions (Na- K) during thermal exposure. The geopolymer composites were prepared with 40 V% of fiber reinforcement such as carbon, E-glass, and basalt at the direction of in plain. Fiber reinforced geopolymer composites were exposed to the room and elevated temperatures inside the oven at air medium for a period of 30 min. The durability of the composites and internal structures with surface microstructures were examined after high temperature exposures. According to the results, geopolymer implied a prominent influence on the thermal shrinkage with the increasing of Si/Al ratios. This was attributed to the densification caused by reduction in porosity during dehydroxylation and sintering. In the case of carbon fiber reinforced composite shows transition in strength after 600 °C due to the oxide protective layer that increases the flexural strength and toughness of the composite. The flexural strength of the carbon reinforced composite increases from 17.8 to 55.8 MPa at 1000 °C.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Heliyon

  • ISSN

    2405-8440

  • e-ISSN

  • Volume of the periodical

    5

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000473561400204

  • EID of the result in the Scopus database

    2-s2.0-85066148420