Large damping-like spin-orbit torque in a 2D conductive 1T-TaS2 monolayer
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F20%3A00539193" target="_blank" >RIV/68378271:_____/20:00539193 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0317378" target="_blank" >http://hdl.handle.net/11104/0317378</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.nanolett.0c01955" target="_blank" >10.1021/acs.nanolett.0c01955</a>
Alternative languages
Result language
angličtina
Original language name
Large damping-like spin-orbit torque in a 2D conductive 1T-TaS2 monolayer
Original language description
A damping-like spin-orbit torque (SOT) is a prerequisite for ultralow-power spin logic devices. Here, we report on the damping-like SOT in just one monolayer of the conducting transition-metal dichalcogenide (TMD) TaS2 interfaced with a NiFe (Py) ferromagnetic layer. The charge-spin conversion efficiency is found to be 0.25 ± 0.03 in TaS2(0.88)/Py(7), and the spin Hall conductivity (14.9 10 × Ω 5 2ℏe − − 1 1 m ) is found to be superior to values reported for other TMDs. We also observed sizable field-like torque in this heterostructure. The origin of this large damping-like SOT can be found in the interfacial properties of the TaS2/Py heterostructure, and the experimental findings are complemented by the results from density functional theory calculations. It is envisioned that the interplay between interfacial spin−orbit coupling and crystal symmetry yielding large damping-like SOT. The dominance of damping-like torque demonstrated in our study provides a promising path for designing the next-generation conducting TMD-based low-powered quantum memory devices
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nano Letters
ISSN
1530-6984
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
6372-6380
UT code for WoS article
000571442000019
EID of the result in the Scopus database
2-s2.0-85090613723