First radiative shock experiments on the SG-II laser
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F21%3A00546879" target="_blank" >RIV/68378271:_____/21:00546879 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0323784" target="_blank" >http://hdl.handle.net/11104/0323784</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/hpl.2021.17" target="_blank" >10.1017/hpl.2021.17</a>
Alternative languages
Result language
angličtina
Original language name
First radiative shock experiments on the SG-II laser
Original language description
We report on the design and first results from experiments looking at the formation of radiative shocks on the Shenguang II (SG-II) laser at the Shanghai Institute of Optics and Fine Mechanics in China. Laser-heating of a two-layer CH/CH–Br foil drives a ∼ 40 km/s shock inside a gas cell filled with argon at an initial pressure of 1 bar. The use of gas-cell targets with large (several millimeters) lateral and axial extent allows the shock to propagate freely without any wall interactions, and permits a large field of view to image single and colliding counter-propagating shocks with time-resolved, point projection X-ray backlighting (∼ 20 µm source size, 4.3 keV photon energy). Single shocks were imaged up to 100 ns after the onset of the laser drive, allowing to probe the growth of spatial nonuniformities in the shock apex. These results are compared with experiments looking at counter-propagating shocks, showing a symmetric drive that leads to a collision and stagnation from ∼ 40 ns onward. We present a preliminary comparison with numerical simulations with the radiation hydrodynamics code ARWEN, which provides expected plasma parameters for the design of future experiments in this facility.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000789" target="_blank" >EF16_019/0000789: Advanced research using high intensity laser produced photons and particles</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
High Power Laser Science and Engineering
ISSN
2095-4719
e-ISSN
2052-3289
Volume of the periodical
9
Issue of the periodical within the volume
Jun
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
e27
UT code for WoS article
000660802900001
EID of the result in the Scopus database
—