All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep-learning based reconstruction of the shower maximum Xmax using the water-Cherenkov detectors of the Pierre Auger Observatory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F21%3A00550827" target="_blank" >RIV/68378271:_____/21:00550827 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/21:10439714 RIV/61989592:15310/21:73608967

  • Result on the web

    <a href="http://hdl.handle.net/11104/0326140" target="_blank" >http://hdl.handle.net/11104/0326140</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1748-0221/16/07/P07019" target="_blank" >10.1088/1748-0221/16/07/P07019</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep-learning based reconstruction of the shower maximum Xmax using the water-Cherenkov detectors of the Pierre Auger Observatory

  • Original language description

    The atmospheric depth of the air shower maximum X-max is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of X-max are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of X-max from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of X-max The reconstruction relies on the signals induced by shower particles in the ground based water-Cherenkov detectors of the Pierre Auger Observatory.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Instrumentation

  • ISSN

    1748-0221

  • e-ISSN

    1748-0221

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    28

  • Pages from-to

    P07019

  • UT code for WoS article

    000702560000003

  • EID of the result in the Scopus database

    2-s2.0-85111106773