A closed local-orbital unified description of DFT and many-body effects
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F22%3A00558198" target="_blank" >RIV/68378271:_____/22:00558198 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1088/1361-648X/ac6eae" target="_blank" >https://doi.org/10.1088/1361-648X/ac6eae</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-648X/ac6eae" target="_blank" >10.1088/1361-648X/ac6eae</a>
Alternative languages
Result language
angličtina
Original language name
A closed local-orbital unified description of DFT and many-body effects
Original language description
Density functional theory (DFT) is usually formulated in terms of the electron density as a function of position n(r). Here we discuss an alternative formulation of DFT in terms of the orbital occupation numbers {nα} associated with a local-orbital orthonormal basis set {ϕα}. First, we discuss how the building blocks of DFT, namely the Hohenberg–Kohn theorems, the Levy–Lieb approach and the Kohn–Sham method, can be adapted for a description in terms of {nα}. In particular, the total energy is now a function of {nα}, E[{nα}], and a Kohn–Sham-like Hamiltonian is derived introducing the effects of the electron–electron interactions via effective potentials, $left{{V}_{alpha }^{ ext{eff}}=partial {E}_{mathrm{e}mathrm{e}}[left{{n}_{ eta } ight}]/partial {n}_{alpha } ight}$. In a second step we consider the Hartree and exchange energies and discuss how to describe them, in the spirit of a DFT approach, in terms of the orbital occupation numbers.n
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics-Condensed Matter
ISSN
0953-8984
e-ISSN
1361-648X
Volume of the periodical
34
Issue of the periodical within the volume
30
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
304006
UT code for WoS article
000802802500001
EID of the result in the Scopus database
2-s2.0-85131225266