All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A closed local-orbital unified description of DFT and many-body effects

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F22%3A00558198" target="_blank" >RIV/68378271:_____/22:00558198 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1088/1361-648X/ac6eae" target="_blank" >https://doi.org/10.1088/1361-648X/ac6eae</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-648X/ac6eae" target="_blank" >10.1088/1361-648X/ac6eae</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A closed local-orbital unified description of DFT and many-body effects

  • Original language description

    Density functional theory (DFT) is usually formulated in terms of the electron density as a function of position n(r). Here we discuss an alternative formulation of DFT in terms of the orbital occupation numbers {nα} associated with a local-orbital orthonormal basis set {ϕα}. First, we discuss how the building blocks of DFT, namely the Hohenberg–Kohn theorems, the Levy–Lieb approach and the Kohn–Sham method, can be adapted for a description in terms of {nα}. In particular, the total energy is now a function of {nα}, E[{nα}], and a Kohn–Sham-like Hamiltonian is derived introducing the effects of the electron–electron interactions via effective potentials, $left{{V}_{alpha }^{ ext{eff}}=partial {E}_{mathrm{e}mathrm{e}}[left{{n}_{ eta } ight}]/partial {n}_{alpha } ight}$. In a second step we consider the Hartree and exchange energies and discuss how to describe them, in the spirit of a DFT approach, in terms of the orbital occupation numbers.n

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physics-Condensed Matter

  • ISSN

    0953-8984

  • e-ISSN

    1361-648X

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    30

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    304006

  • UT code for WoS article

    000802802500001

  • EID of the result in the Scopus database

    2-s2.0-85131225266