Extraction of the muon signals recorded with the surface detector of the Pierre Auger Observatory using recurrent neural networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F22%3A00564677" target="_blank" >RIV/68378271:_____/22:00564677 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/22:73616686
Result on the web
<a href="https://pos.sissa.it/395/229/pdf" target="_blank" >https://pos.sissa.it/395/229/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22323/1.395.0229" target="_blank" >10.22323/1.395.0229</a>
Alternative languages
Result language
angličtina
Original language name
Extraction of the muon signals recorded with the surface detector of the Pierre Auger Observatory using recurrent neural networks
Original language description
We present a method based on the use of Recurrent Neural Networks to extract the muon component from the time traces registered with water-Cherenkov detector (WCD) stations of the Surface Detector of the Pierre Auger Observatory. The design of the WCDs does not allow to separate the contribution of muons to the time traces obtained from the WCDs from those of photons, electrons and positrons for all events. Separating the muon and electromagnetic components is crucial for the determination of the nature of the primary cosmic rays and properties of the hadronic interactions at ultra-high energies.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10303 - Particles and field physics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Science
ISBN
—
ISSN
1824-8039
e-ISSN
—
Number of pages
12
Pages from-to
229
Publisher name
Sissa Medilab srl
Place of publication
Trieste
Event location
Berlin
Event date
Jul 12, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—