All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unbinned deep learning jet substructure measurement in high Q2 ep collisions at HERA

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F23%3A00582507" target="_blank" >RIV/68378271:_____/23:00582507 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/23:10474989 RIV/61989592:15310/23:73622971

  • Result on the web

    <a href="https://hdl.handle.net/11104/0350569" target="_blank" >https://hdl.handle.net/11104/0350569</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.physletb.2023.138101" target="_blank" >10.1016/j.physletb.2023.138101</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unbinned deep learning jet substructure measurement in high Q2 ep collisions at HERA

  • Original language description

    The radiation pattern within high energy quark- and gluon-initiated jets (jet substructure) is used extensively as a precision probe of the strong force as well as an environment for optimizing event generators with numerous applications in high energy particle and nuclear physics. Looking at electron-proton collisions is of particular interest as many of the complications present at hadron colliders are absent. A detailed study of modern jet substructure observables, jet angularities, in electron-proton collisions is presented using data recorded using the H1 detector at HERA. The measurement is unbinned and multi-dimensional, using machine learning to correct for detector effects. All of the available reconstructed object information of the respective jets is interpreted by a graph neural network, achieving superior precision on a selected set of jet angularities.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physics Letters. B

  • ISSN

    0370-2693

  • e-ISSN

    1873-2445

  • Volume of the periodical

    844

  • Issue of the periodical within the volume

    Sept

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    21

  • Pages from-to

    138101

  • UT code for WoS article

    001068892700001

  • EID of the result in the Scopus database

    2-s2.0-85167782568