All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Bethe equations of 2d conformal field theory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00598833" target="_blank" >RIV/68378271:_____/24:00598833 - isvavai.cz</a>

  • Result on the web

    <a href="https://hdl.handle.net/11104/0364683" target="_blank" >https://hdl.handle.net/11104/0364683</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/JHEP09(2024)115" target="_blank" >10.1007/JHEP09(2024)115</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Bethe equations of 2d conformal field theory

  • Original language description

    We study the higher spin algebras of two-dimensional conformal field theory from the perspective of quantum integrability. Starting from Maulik-Okounkov instanton R-matrix and applying the procedure of algebraic Bethe ansatz, we obtain infinite commuting families of Hamiltonians of quantum ILW hierarchy parametrized by the shape of the auxiliary torus. We calculate explicitly the first five of these Hamiltonians. Then, we numerically verify that their joint spectrum can be parametriezed by solutions of Litvinov’s Bethe ansatz equations and we conjecture a general formula for the joint spectrum of all ILW Hamiltonians, based on results of Feigin, Jimbo, Miwa and Mukhin.There are two interesting degeneration limits, the infinitely thick and the infinitely thin auxiliary torus. In one of these limits, the ILW hierarchy degenerates to Yangian or Benjamin-Ono hiearchy and the Bethe equations can be easily solved. The other limit is singular but we can nevertheless extract local Hamiltonians corresponding to quantum KdV or KP hierarchy. Litvinov’s Bethe equations in this local limit provide an alternative to Bethe ansatz equations of Bazhanov, Lukyanov and Zamolodchikov, but are more transparent, work at any rank and are manifestly symmetric under triality symmetry of W1+∞W1+∞​. Finally, we illustrate analytic properties of the solutions of Bethe equations in minimal models, in particular for Lee-Yang CFT. The analytic structure of Bethe roots is very rich as it captures the representation theory of W_N​ minimal models.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

    <a href="/en/project/GX20-25775X" target="_blank" >GX20-25775X: Applied String Field Theory</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of High Energy Physics

  • ISSN

    1029-8479

  • e-ISSN

    1029-8479

  • Volume of the periodical

    2024

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    105

  • Pages from-to

    115

  • UT code for WoS article

    001316967400002

  • EID of the result in the Scopus database

    2-s2.0-85204484855