All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Automating data classification for label-free point-of-care biosensing in real complex samples

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00599585" target="_blank" >RIV/68378271:_____/24:00599585 - isvavai.cz</a>

  • Result on the web

    <a href="https://hdl.handle.net/11104/0357035" target="_blank" >https://hdl.handle.net/11104/0357035</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.sna.2024.115501" target="_blank" >10.1016/j.sna.2024.115501</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Automating data classification for label-free point-of-care biosensing in real complex samples

  • Original language description

    Surface-based affinity biosensors present a promising avenue for point-of-care (POC) pathogen detection in real-world samples. This paper introduces a procedure for automatically classifying pathogen presence in unprocessed liquids from direct detection data measured by a simple POC quartz crystal microbalance sensor device. We show that the developed procedure exhibits exceptional robustness across different biosensing assays and complex real-world media. Through optimizing parameters using diverse datasets encompassing Escherichia coli O157:H7 (E. coli) and SARS-CoV-2 detection in various media, we achieved rates of successful detection as high as 80.8 % and 90.9 % for E. coli and SARS-CoV-2, respectively, without extensive machine learning. Our results suggest that this exceptionally robust method holds potential as a straightforward tool for automating sample classification in point-of-care diagnostics, underpinning its promising broader applicability.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10610 - Biophysics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Sensors and Actuators A - Physical

  • ISSN

    0924-4247

  • e-ISSN

    1873-3069

  • Volume of the periodical

    374

  • Issue of the periodical within the volume

    Aug

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

    115501

  • UT code for WoS article

    001246546400001

  • EID of the result in the Scopus database

    2-s2.0-85194105928