All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Plasmon-enhanced multiphoton polymer crosslinking for selective modification of plasmonic hotspots

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00600806" target="_blank" >RIV/68378271:_____/24:00600806 - isvavai.cz</a>

  • Result on the web

    <a href="https://hdl.handle.net/11104/0359070" target="_blank" >https://hdl.handle.net/11104/0359070</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcc.4c05936" target="_blank" >10.1021/acs.jpcc.4c05936</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Plasmon-enhanced multiphoton polymer crosslinking for selective modification of plasmonic hotspots

  • Original language description

    A novel approach to selectively modify narrow subareas of metallic nanostructures adjacent to plasmonic hotspots, where strong electromagnetic field amplification occurs upon localized surface plasmon (LSP) excitation, is reported. In contrast to surface plasmon-triggered polymerization, it relies on plasmonically enhanced multiphoton crosslinking MPC) of polymer chains carrying photoactive moieties. When they are contacted with metallic nanostructures and irradiated with a femtosecond near-infrared beam resonantly coupled with LSPs, the enhanced field intensity locally exceeds the threshold and initiates MPC only at plasmonic hotspots. This concept is demonstrated by using gold nanoparticle arrays coated with two specifically designed polymers. Local MPC of a poly(N,N-dimethylacrylamide)-based copolymer with an anthraquinone crosslinker is shown via atomic force microscopy. Additionally, MPC is tested with a thermoresponsive poly(N-isopropylacrylamide)-based terpolymer. The reversible thermally induced collapse and swelling of the MPC-formed hydrogel at specific nanoparticle locations are confirmed by polarization-resolved localized surface plasmon resonance (LSPR) spectroscopy. These hybrid metallic/hydrogel materials can be further postmodified, offering attractive characteristics for future spectroscopic/bioanalytical applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physical Chemistry C

  • ISSN

    1932-7447

  • e-ISSN

    1932-7455

  • Volume of the periodical

    128

  • Issue of the periodical within the volume

    43

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    18641-18650

  • UT code for WoS article

    001340371100001

  • EID of the result in the Scopus database

    2-s2.0-85207367354