All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Setups for eliminating static charge of the ATLAS18 strip sensors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00603486" target="_blank" >RIV/68378271:_____/24:00603486 - isvavai.cz</a>

  • Result on the web

    <a href="https://hdl.handle.net/11104/0360813" target="_blank" >https://hdl.handle.net/11104/0360813</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1748-0221/19/02/C02001" target="_blank" >10.1088/1748-0221/19/02/C02001</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Setups for eliminating static charge of the ATLAS18 strip sensors

  • Original language description

    Construction of the new all-silicon Inner Tracker (ITk), developed by the ATLAS collaboration to be able to track charged particles produced at the High-Luminosity LHC, started in 2020 and is expected to continue till 2028. The ITk detector will include 18,000 highly segmented and radiation hard n+-in-p silicon strip sensors (ATLAS18), which are being manufactured by Hamamatsu Photonics. Mechanical and electrical characteristics of produced sensors are measured upon their delivery at several institutes participating in a complex Quality Control (QC) program. The QC tests performed on each individual sensor check the overall integrity and quality of the sensor. During the QC testing of ATLAS18 strip sensors, an increased number of sensors that failed the electrical tests was observed. In particular, IV measurements indicated an early breakdown, while large areas containing several tens or hundreds of neighbouring strips with low interstrip isolation were identified by the Full strip tests, and leakage current instabilities were measured in a long-term leakage current stability setup. Moreover, a high surface electrostatic charge reaching a level of several hundreds of volts per inch was measured on a large number of sensors and on the plastic sheets, which mechanically protect these sensors in their paper envelopes. Accumulated data indicates a clear correlation between observed electrical failures and the sensor charge-up. To mitigate the above-described issues, the QC testing sites significantly modified the sensor handling procedures and introduced sensor recovery techniques based on irradiation of the sensor surface with UV light or application of intensive flows of ionized gas. In this presentation, we will describe the setups implemented by the QC testing sites to treat silicon strip sensors affected by static charge and evaluate the effectiveness of these setups in terms of improvement of the sensor performance.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Instrumentation

  • ISSN

    1748-0221

  • e-ISSN

    1748-0221

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    C02001

  • UT code for WoS article

    001182274900001

  • EID of the result in the Scopus database

    2-s2.0-85183943781