All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Recent advances in grating coupled surface plasmon resonance technology

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00604884" target="_blank" >RIV/68378271:_____/24:00604884 - isvavai.cz</a>

  • Result on the web

    <a href="https://hdl.handle.net/11104/0362418" target="_blank" >https://hdl.handle.net/11104/0362418</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/adom.202401862" target="_blank" >10.1002/adom.202401862</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Recent advances in grating coupled surface plasmon resonance technology

  • Original language description

    Surface plasmon resonance (SPR) is a key technique in developing sensor platforms for clinical diagnostics, drug discovery, food quality, and environmental monitoring applications. While prism-coupled (Kretschmann) SPR remains a “gold-standard” for laboratory work-flows due to easier fabrication, handling and high through put, other configurations such as grating-coupled SPR (GC-SPR) and wave-guide mode SPR are yet to fulfil their technology potential. This work evaluates the technical aspects influencing the performance of GC-SPR and reviews recent progress in the fabrication of such platforms. In principle, the GC-SPR involves the illumination of the plasmonic metal film with periodic gratings to excite the surface plasmons (SP) via diffraction-based phase matching. The real performance of the GC-SPR is, however, heavily influenced by the topography of the grating structures produced via top-down lithography techniques. This review discusses latest in approaches to achieve consistent plasmonic gratings with uniform features and periodicity over a large scale and explores the choice of plasmon-active and substrate material for enhanced performance. The review also provides insights into the different GC-SPR measurement configurations and highlights on opportunities with their potential applications as biosensors with translational capabilities.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advanced Optical Materials

  • ISSN

    2195-1071

  • e-ISSN

    2195-1071

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    34

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    29

  • Pages from-to

    2401862

  • UT code for WoS article

    001312028800001

  • EID of the result in the Scopus database

    2-s2.0-85204135216