Strain-induced phase transition from antiferromagnet to altermagnet
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00605214" target="_blank" >RIV/68378271:_____/24:00605214 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1103/PhysRevB.109.144421" target="_blank" >https://doi.org/10.1103/PhysRevB.109.144421</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.109.144421" target="_blank" >10.1103/PhysRevB.109.144421</a>
Alternative languages
Result language
angličtina
Original language name
Strain-induced phase transition from antiferromagnet to altermagnet
Original language description
The newly discovered altermagnets are unconventional collinear compensated magnetic systems, exhibiting even (d, g, or i wave) spin-polarization order in the band structure, setting them apart from conventional collinear ferromagnets and antiferromagnets. Altermagnets offer advantages of spin-polarized current akin to ferromagnets, and THz functionalities similar to antiferromagnets, while introducing new effects like spinsplitter currents. A key challenge for future applications and functionalization of altermagnets is to demonstrate controlled transitioning to the altermagnetic phase from other conventional phases in a single material. Here we prove a viable path toward overcoming this challenge through a strain-induced transition from an antiferromagnetic to an altermagnetic phase in ReO2. Combining spin group symmetry analysis and ab initio calculations, we demonstrate that under compressive strain ReO2 undergoes such transition, lifting the Kramers degeneracy of the band structure of the antiferromagnetic phase in the nonrelativistic regime. In addition, we show that this magnetic transition is accompanied by a metal-insulator transition, and calculate the distinct spin-polarized spectral functions of the two phases, which can be detected in angle-resolved photoemission spectroscopy experiments.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/GX19-28375X" target="_blank" >GX19-28375X: Terahertz and neuromorphic memories based on antiferromagnets</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review B
ISSN
2469-9950
e-ISSN
2469-9969
Volume of the periodical
109
Issue of the periodical within the volume
14
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
144421
UT code for WoS article
001250622300002
EID of the result in the Scopus database
2-s2.0-85191308998