All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Poynting vector and wave vector directions of equatorial chorus

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F16%3A00472232" target="_blank" >RIV/68378289:_____/16:00472232 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/16:10336425

  • Result on the web

    <a href="http://dx.doi.org/10.1002/2016JA023389" target="_blank" >http://dx.doi.org/10.1002/2016JA023389</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/2016JA023389" target="_blank" >10.1002/2016JA023389</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Poynting vector and wave vector directions of equatorial chorus

  • Original language description

    We present new results on wave vectors and Poynting vectors of chorus rising and falling tones on the basis of 6 years of THEMIS (Time History of Events and Macroscale Interactions during Substorms) observations. The majority of wave vectors is closely aligned with the direction of the ambient magnetic field (B-0). Oblique wave vectors are confined to the magnetic meridional plane, pointing away from Earth. Poynting vectors are found to be almost parallel to B-0. We show, for the first time, that slightly oblique Poynting vectors are directed away from Earth for rising tones and toward Earth for falling tones. For the majority of lower band chorus elements, the mutual orientation between Poynting vectors and wave vectors can be explained by whistler mode dispersion in a homogeneous collisionless cold plasma. Upper band chorus seems to require inclusion of collisional processes or taking into account azimuthal anisotropies in the propagation medium. The latitudinal extension of the equatorial source region can be limited to +/- 6 degrees around the B-0 minimum or approximately +/- 5000 km along magnetic field lines. We find increasing Poynting flux and focusing of Poynting vectors on the B-0 direction with increasing latitude. Also, wave vectors become most often more field aligned. A smaller group of chorus generated with very oblique wave normals tends to stay close to the whistler mode resonance cone. This suggests that close to the equatorial source region (within similar to 20 degrees latitude), a wave guidance mechanism is relevant, for example, in ducts of depleted or enhanced plasma density.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BL - Plasma physics and discharge through gases

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Geophysical Research: Space Physics

  • ISSN

    2169-9380

  • e-ISSN

  • Volume of the periodical

    121

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    11912-11928

  • UT code for WoS article

    000393183300020

  • EID of the result in the Scopus database

    2-s2.0-85007085705