All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Atmospheric and ionospheric waves induced by the Hunga eruption on 15 January 2022, Doppler sounding and infrasound

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F23%3A00567900" target="_blank" >RIV/68378289:_____/23:00567900 - isvavai.cz</a>

  • Result on the web

    <a href="https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggac517/6960676?login=true" target="_blank" >https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggac517/6960676?login=true</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/gji/ggac517" target="_blank" >10.1093/gji/ggac517</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Atmospheric and ionospheric waves induced by the Hunga eruption on 15 January 2022, Doppler sounding and infrasound

  • Original language description

    The massive explosive eruption of the Hunga volcano on 15 January 2022 generated atmospheric waves that were recorded around the globe and affected the ionosphere. The paper focuses on observations of atmospheric waves in the troposphere and ionosphere in Europe, however, a comparison with observations in East Asia, South Africa and South America is also provided. Unlike most recent studies of waves in the ionosphere based on the detection of changes in the total electron content, this study builds on detection of ionospheric motions at specific altitudes using continuous Doppler sounding. In addition, much attention is paid to long-period infrasound (periods longer than ∼50 s), which in Europe is observed simultaneously in the troposphere and ionosphere about an hour after the arrival of the first horizontally propagating pressure pulse (Lamb wave). It is shown that the long-period infrasound propagated approximately along the shorter great circle path, similar to the previously detected pressure pulse in the troposphere. It is suggested that the infrasound propagated in the ionosphere probably due to imperfect refraction in the lower thermosphere. The observation of infrasound in the ionosphere at such large distances from the source (over 16 000 km) is rare and differs from ionospheric infrasound detected at large distances from the epicenters of strong earthquakes, because in the latter case the infrasound is generated locally by seismic waves. An unusually large traveling ionospheric disturbance (TID) observed in Europe and associated with the pressure pulse from the Hunga eruption is also discussed. Doppler sounders in East Asia, South Africa and South America did not record such a significant TID. However, TIDs were observed in East Asia around times when Lamb waves passed the magnetically conjugate points. A probable observation of wave in the mesopause region in Europe approximately 25 min after the arrival of pressure pulse in the troposphere using a 23.4 kHz signal from a transmitter 557 km away and a coincident pulse in electric field data are also discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LTAUSA17100" target="_blank" >LTAUSA17100: Models of thermal plasma parameters in the Earth's environment and their specification in real time using satellite data</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geophysical Journal International

  • ISSN

    0956-540X

  • e-ISSN

    1365-246X

  • Volume of the periodical

    233

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    1429-1443

  • UT code for WoS article

    001038389500039

  • EID of the result in the Scopus database

    2-s2.0-85168123263