Magnetopause location modeling using machine learning: inaccuracy due to solar wind parameter propagation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F24%3A00586577" target="_blank" >RIV/68378289:_____/24:00586577 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/24:10484599
Result on the web
<a href="https://www.frontiersin.org/articles/10.3389/fspas.2024.1390427/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fspas.2024.1390427/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fspas.2024.1390427" target="_blank" >10.3389/fspas.2024.1390427</a>
Alternative languages
Result language
angličtina
Original language name
Magnetopause location modeling using machine learning: inaccuracy due to solar wind parameter propagation
Original language description
An intrinsic limitation of empirical models of the magnetopause location is a predefined magnetopause shape and assumed functional dependences on relevant parameters. We overcome this limitation using a machine learning approach (artificial neural networks), allowing us to incorporate general, purely data-driven dependences. For the training and testing of the developed neural network model, a data set of about 15,000 magnetopause crossings identified in the THEMIS A-E, Magion 4, Geotail, and Interball-1 satellite data in the subsolar region is used. A cylindrical symmetry around the direction of the impinging solar wind is assumed, and solar wind dynamic pressure, interplanetary magnetic field magnitude, cone angle, clock angle, tilt angle, and corrected Dst index are considered as parameters. The effect of these parameters on the magnetopause location is revealed. The performance of the developed model is compared with other empirical magnetopause models. Finally, we demonstrate and discuss the inaccuracy of magnetopause models due to the inaccurate information about the impinging solar wind parameters based on measurements near the L1 point. This inaccuracy imposes a theoretical limit on the precision of magnetopause predictions, a limit that our model closely approaches.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/GA21-26463S" target="_blank" >GA21-26463S: Magnetopause processes, their drivers and consequences</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Astronomy and Space Sciences
ISSN
2296-987X
e-ISSN
2296-987X
Volume of the periodical
11
Issue of the periodical within the volume
May
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
1390427
UT code for WoS article
001233399900001
EID of the result in the Scopus database
2-s2.0-85194891924