All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ionospheric Absorption Variation Based on Ionosonde and Riometer Data and the NOAA D-RAP Model over Europe During Intense Solar Flares in September 2017

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F24%3A00600034" target="_blank" >RIV/68378289:_____/24:00600034 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2072-4292/16/21/3975" target="_blank" >https://www.mdpi.com/2072-4292/16/21/3975</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs16213975" target="_blank" >10.3390/rs16213975</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ionospheric Absorption Variation Based on Ionosonde and Riometer Data and the NOAA D-RAP Model over Europe During Intense Solar Flares in September 2017

  • Original language description

    A novel method was developed based on the amplitude data of the EM waves measured by Digisondes to calculate and investigate the relative ionospheric absorption changes. The effect of 13 solar flares (>C8) that occurred from 4 to 10 September 2017 were studied at three European Digisonde stations (Juliusruh (54.63°N, 13.37°E), Průhonice (49.98°N, 14.55°E) and San Vito (40.6°N, 17.8°E)). The present study compares the results of the amplitude method with the absorption changes measured by the Finnish Riometer Network and determined by the NOAA D-RAP model during the same events. The X-class flares caused 1.5–2.5 dB of attenuation at 30–32.5 MHz based on the riometer data, while the absorption changes were between 10 and 15 dB in the 2.5–4.5 MHz frequency range according to the amplitude data. The impact caused by energetic particles after the solar flares are clearly seen in the riometer data, while among the Digisonde stations it can be observed only at Juliusruh in some certain cases. Comparing the results of the amplitude method with the D-RAP model it seems evident that the observed absorption values almost always exceed the values given by the model both at 2.5 MHz and at 4 MHz during the investigated period. According to the comparison between the riometer data with the D-RAP, generally, the model underestimates the absorption values obtained from the riometers during solar flares except at the highest latitude stations, while D-RAP overestimates the impact during the particle events.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10509 - Meteorology and atmospheric sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Remote Sensing

  • ISSN

    2072-4292

  • e-ISSN

    2072-4292

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    21

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    22

  • Pages from-to

    3975

  • UT code for WoS article

    001352658200001

  • EID of the result in the Scopus database

    2-s2.0-85208453446