All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effects of various chemical agents on mechanical characteristics of weak lime mortar

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F19%3A00490962" target="_blank" >RIV/68378297:_____/19:00490962 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-91606-4_17" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-91606-4_17</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-91606-4_17" target="_blank" >10.1007/978-3-319-91606-4_17</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effects of various chemical agents on mechanical characteristics of weak lime mortar

  • Original language description

    Lime water treatment on a specific lime mortar was tested and evaluated for effectiveness, showing that after a sufficiently high number of applications (160 cycles, 54–80 days of a permanent consolidation treatment) some of the poor mechanical characteristics (compression and surface cohesion) were substantially improved. The lime water treatment was also compared with some other less labour-intensive technologies. The most efficient agents were dispersions of calcium hydroxide in alcohols, which are marketed under the trade name CaLoSiL by the German producer IBZ Freiberg. The major advantage with these agents is that they can be applied much more rapidly than tens to hundreds of lime water cycles and they deliver a higher amount of lime in each cycle. While lime water contains only small calcium ions, sized about 0.1 nm, calcium hydroxide particles in CaLoSiL are considerably larger (50–200 nm). This property makes the use of these nanolime dispersions limited to structural consolidation of porous material with a sufficiently large pore diameter. Nanolime dispersions applied to mortar where the majority of pores are around 100 µm in diameter is efficient enough to allow for a one-day application of CaLoSiL E15 (7 cycles), to reach significant strengthening. It appears from the results that lower concentrations of CaLoSiL (E 15) create a better distribution of the new binder and therefore lead to higher compression strength than the more concentrated CaLoSiL (IP 25). Diluted, 8% silicic acid ester, applied in two cycles, showed the same consolidation effect as CaLoSiL E 15 applied in 7 cycles. Surface cohesion of mortar was improved following most of the consolidation treatments tested, including multiple applications of ammonium oxalate and barium water. Addition of metakaolin to lime water did not provide any added strengthening benefit. However, the combination of silicic acid ester with nano-lime product (CaLoSiL IP 25) was shown to be effective.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/GA17-05030S" target="_blank" >GA17-05030S: The influence of the reaction conditions on the formation and mechanical properties of CaCO3 polymorphs in lime-based building materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Historic mortars. Advances in research and practical conservation

  • ISBN

    978-3-319-91604-0

  • Number of pages of the result

    14

  • Pages from-to

    227-240

  • Number of pages of the book

    336

  • Publisher name

    Springer

  • Place of publication

    Cham

  • UT code for WoS chapter