All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Consolidating efficiency of nanolime product CaLoSiL on porous limestone

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F23%3A00566900" target="_blank" >RIV/68378297:_____/23:00566900 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/buildings13010209" target="_blank" >https://doi.org/10.3390/buildings13010209</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/buildings13010209" target="_blank" >10.3390/buildings13010209</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Consolidating efficiency of nanolime product CaLoSiL on porous limestone

  • Original language description

    The effects of the double and the multiple application (2 to 6) of Calosil® (IBZ-Salzchemie GmbH, Halsbruecke, Germany) E25, IP 25 and E50 products were studied on Maastricht limestone, which is characterized by high porosity and large pores. Both destructive and non-destructive laboratory tests we performed in order to assess the consolidating efficiency of the nanolimes—the bending and compressive strengths, ultrasound velocity measurement, porosity determination and SEM examination. Except for the compressive strength, the other characteristics were investigated in the depth profile of stone specimens to find the distribution of the treatment product within the substrate. The performed tests showed good penetration of CaLoSiL nanolime products into the studied limestone. The bending strengths of limestone samples after double treatment using nanolime E 25, IP25 and E 50 were found to be increased by 50%, 44% and 89%, respectively, the compressive strength increased by 50%, 23% and 73%. The porosity of the stone was reduced by the treatment, but only slightly, to an acceptable extent. The higher sum of performed nanolime applications resulted in a higher strengthening effect but at the same time at the uneven distribution of the product in the stone specimen, which was followed by an increase in the strength and decrease of open porosity in the surface part. SEM examination showed a modification of the stone microstructure by the added binder.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/TL03000603" target="_blank" >TL03000603: Hidden Beneath the Surface. Archaeological Terrains of Prague Castle, their Protection and Presentation in the Modern World.</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Buildings

  • ISSN

    2075-5309

  • e-ISSN

    2075-5309

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    11

  • Pages from-to

    209

  • UT code for WoS article

    000914567900001

  • EID of the result in the Scopus database

    2-s2.0-85146507207