Cache Misses Analysis by Means of Data Mining Methods
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F06%3A03116279" target="_blank" >RIV/68407700:21110/06:03116279 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Cache Misses Analysis by Means of Data Mining Methods
Original language description
It is really difficult to predict the cache behavior even for a simple program because every modern CPU use a complex memory hierarchy, which consists of levels of cache memories. One challenging task is to predict the exact number of cache misses duringthe sparse matrix-vector multiplication. Due to matrix sparsity, the memory access patterns are irregular and the utilization of a cache suffers from low spatial and temporal locality. It is really difficult to predict the cache behavior for all cases of input parameters. The cache misses data were also analyzed by means of data mining methods. This is the main topic of this paper and we will discuss the data mining analysis bellow in the more detailed form.
Czech name
Analýza počtu výpadků ve skryté paměti pomocí těžby z dat
Czech description
Tento příspěvek popisuje možnosti analýzy počtu výpadků ve skryté paměti pomocí těžby z dat.
Classification
Type
A - Audiovisual production
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IBS3086102" target="_blank" >IBS3086102: Parallel Algorithms for Large Scale Simulation on PC Clusters</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
80-01-03439-9
Place of publication
Praha
Publisher/client name
—
Version
—
Carrier ID
neuvedeno