A remark on the optimal mesh and the optimal polynomial degree distribution in solving 1D boundary value problem by the hp-FEM
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F11%3A00179277" target="_blank" >RIV/68407700:21110/11:00179277 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A remark on the optimal mesh and the optimal polynomial degree distribution in solving 1D boundary value problem by the hp-FEM
Original language description
An elliptic second order boundary value problem is considered in 1D. Given the total number of DOF, the goal is to find both the mesh and the polynomial degree distribution that minimize the difference between the exact solution and the hp-FEM solution.To this end, a constrained optimization method is applied. Since the optimization of the polynomial degree distribution leads to a combinatorial optimization problem, solving the entire optimization problem is a computationally demanding task.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP105%2F10%2F1682" target="_blank" >GAP105/10/1682: Solution of Large Hydro-Thermo-Mechanical Problems Using Adaptive hp-FEM</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
SNA'11 Seminar on Numerical Analysis. Modelling and Simulation of Challenging Engineering Problems
ISBN
978-80-86407-19-7
ISSN
—
e-ISSN
—
Number of pages
3
Pages from-to
54-56
Publisher name
Ústav geoniky AV ČR
Place of publication
Ostrava
Event location
Rožnov pod Radhoštěm
Event date
Jan 24, 2011
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—