Does a billiard orbit determine its (polygonal) table?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F11%3A00189587" target="_blank" >RIV/68407700:21110/11:00189587 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4064/fm212-2-2" target="_blank" >http://dx.doi.org/10.4064/fm212-2-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/fm212-2-2" target="_blank" >10.4064/fm212-2-2</a>
Alternative languages
Result language
angličtina
Original language name
Does a billiard orbit determine its (polygonal) table?
Original language description
We introduce a new equivalence relation on the set of all polygonal billiards. We say that two billiards (or polygons) are order equivalent if each of the billiards has an orbit whose footpoints are dense in the boundary and the two sequences of footpoints of these orbits have the same combinatorial order. We study this equivalence relation under additional regularity conditions on the orbit.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0854" target="_blank" >GA201/09/0854: Dynamics of Iterative Systems</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fundamenta Mathematicae
ISSN
0016-2736
e-ISSN
—
Volume of the periodical
212
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
16
Pages from-to
129-144
UT code for WoS article
000290643700002
EID of the result in the Scopus database
—