RegNeN 2012
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F12%3A00200395" target="_blank" >RIV/68407700:21110/12:00200395 - isvavai.cz</a>
Result on the web
<a href="http://klobouk.fsv.cvut.cz/~anicka/regnen/regnen.html" target="_blank" >http://klobouk.fsv.cvut.cz/~anicka/regnen/regnen.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
RegNeN 2012
Original language description
Program for finding optimal regression function of given data using artificial neural network (ANN). The implemented ANN architecture is based on fully connected three-layer perceptron. It offers the choice between two training algorithms, the deterministic conjugate gradient-based algorithm and the stochastic Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The software can normalize the training and testing data according to the specification in the input file. The user has to supply it by the training and testing data. During the training phase, the number of hidden neurons is automatically increased and overtraining is evaluated by the cross-validation method. The resulting best topology is then evaluated on the provided independent testing data.
Czech name
—
Czech description
—
Classification
Type
R - Software
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GPP105%2F11%2FP370" target="_blank" >GPP105/11/P370: Artificial neural networks in multi-scale modelling of transport processes in heterogeneous materials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Internal product ID
RegNeN 2012
Technical parameters
verze v C++
Economical parameters
volně k dispozici
Owner IČO
68407700
Owner name
Fakulta stavební ČVUT v Praze