The asymptotic properties of turbulent solutions to the Navier-Stokes equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F12%3A00204189" target="_blank" >RIV/68407700:21110/12:00204189 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The asymptotic properties of turbulent solutions to the Navier-Stokes equations
Original language description
In this paper we study the large time behavior of solutions to the Navier-Stokes equations. We present a brief survey of results concerning energy decay, and discuss a related phenomenon of the large time energy concentration in the frequency space occurring in any turbulent solution. This leads us to the study of solutions in the Besov spaces and to proof that if we choose a suitable initial condition then in some Besov spaces the energy of the associated solution does not decrease asymptotically to zero.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Polytechnica
ISSN
1210-2709
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
6
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
6
Pages from-to
99-104
UT code for WoS article
—
EID of the result in the Scopus database
—