Towards RVE via Wang tilings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F14%3A00221344" target="_blank" >RIV/68407700:21110/14:00221344 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Towards RVE via Wang tilings
Original language description
A generalization of popular periodic unit cell approach to modelling of heterogeneous materials is presented. Microstructural information is compressed within a set of Wang tiles, small domino-like domains, instead of a single periodic cell. As result periodicity in reconstructed microstructure inherent to the unit cell approach is reduced and controlled with cardinality of the tile set. Employing a stochastic tiling algorithm allows microstructure realizations of various sizes to be efficiently constructed. This feature makes the tiling concept appealing from the viewpoint of numerical homogenization in which the issue of representativeness of a computational domain is of primary concern. The computational cost of asymptotic homogenization is addressed by making use of repetitive occurrence of tiles in computational domains. In the case of linear problems the global stiffness matrix of whole domain can be assembled from Schur complements of stiffness matrices of individual tiles resul
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
JI - Composite materials
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-24027S" target="_blank" >GA13-24027S: Wang Tiling Compressions of Real World Material Systems</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů