All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hausdorff dimension of metric spaces and Lipschitz maps onto cubes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F14%3A00241236" target="_blank" >RIV/68407700:21110/14:00241236 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1093/imrn/rns223" target="_blank" >http://dx.doi.org/10.1093/imrn/rns223</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imrn/rns223" target="_blank" >10.1093/imrn/rns223</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hausdorff dimension of metric spaces and Lipschitz maps onto cubes

  • Original language description

    We prove that a compact metric space (ormore generally an analytic subset of a complete separable metric space) of Hausdorff dimension bigger than k can always be mapped onto a k-dimensional cube by a Lipschitz map. We also show that this does not hold for arbitrary separable metric spaces. As an application, we essentially answer a question of Urbanski.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Mathematics Research Notices

  • ISSN

    1073-7928

  • e-ISSN

  • Volume of the periodical

    2014

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    289-302

  • UT code for WoS article

    000330445600001

  • EID of the result in the Scopus database

    2-s2.0-84892779218