AN ASYNCHRONOUS THREE-FIELD DOMAIN DECOMPOSITION METHOD FOR FIRST-ORDER EVOLUTION PROBLEMS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F15%3A00227527" target="_blank" >RIV/68407700:21110/15:00227527 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
AN ASYNCHRONOUS THREE-FIELD DOMAIN DECOMPOSITION METHOD FOR FIRST-ORDER EVOLUTION PROBLEMS
Original language description
We present an asynchronous multi-domain time integration algorithm with a dual domain decomposition method for the initial boundary-value problems for a parabolic equation. For efficient parallel computing, we apply the three-field domain decomposition method with local Lagrange multipliers to ensure the continuity of the primary unknowns at the interface between subdomains. The implicit method for time discretization and the multi-domain spatial decomposition enable us to use different time steps (subcycling) on different parts of a computational domain, and thus efficiently capture the underlying physics with less computational effort. We illustrate the performance of the proposed multi-domain time integrator by means of a simple numerical example.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-21450S" target="_blank" >GA14-21450S: Efficient asynchronous numerical methods for coupled processes in civil engineering structures and geomaterials</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Seminar Programs and Algorithms of Numerical Mathematics 17
ISBN
978-80-85823-64-6
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
118-123
Publisher name
Academy of Sciences of the Czech Republic
Place of publication
Praha
Event location
Dolní Maxov
Event date
Jun 8, 2014
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—