Multiscale Micromechanical Damage Model for Compressive Strength Based on Cement Paste Microstructure
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F15%3A00233150" target="_blank" >RIV/68407700:21110/15:00233150 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Multiscale Micromechanical Damage Model for Compressive Strength Based on Cement Paste Microstructure
Original language description
Compressive strength is one of the most important and tested mechanical properties of cement paste. This paper presents a new four-level micromechanical model for compressive strength applicable on both pure and blended cement pastes. The model assumes that intrinsic tensile strength of C-S-H globules governs the compressive strength of cement paste. Crack propagation on all hierarchical levels starts once tensile stresses on a randomly inclined ellipsoidal inclusions within C-S-H exceed cohesive stress. The inclusion of unhydrated clinker, supplementary cementitious materials, other hydration products, or entrapped (or entrained) air further decreases the compressive strength of cement paste. The multiscale model uses volume fractions of principal chemical phases as input parameters as well as introduces a spatial gradient of C-S-H between individual grains which has a pronounced impact on predicted compressive strength. Calibration of the model on 95 experimental compressive strength
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JN - Civil engineering
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CONCREEP-10 Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures
ISBN
978-0-7844-7934-6
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
1211-1218
Publisher name
Vienna University Of Technology, Institute For Mechanics of Materials and Structures
Place of publication
Vienna
Event location
Vídeň
Event date
Sep 21, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—