All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Properties of Lightweight Cement-Based Composites Containing Waste Polypropylene

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00301099" target="_blank" >RIV/68407700:21110/16:00301099 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4955261" target="_blank" >http://dx.doi.org/10.1063/1.4955261</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4955261" target="_blank" >10.1063/1.4955261</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Properties of Lightweight Cement-Based Composites Containing Waste Polypropylene

  • Original language description

    Improvement of buildings thermal stability represents an increasingly important trend of the construction industry. This work aims to study the possible use of two types of waste polypropylene (PP) for the development of lightweight cement-based composites with enhanced thermal insulation function. Crushed PP waste originating from the PP tubes production is used for the partial replacement of silica sand by 10, 20, 30, 40 and 50 mass%, whereas a reference mixture without plastic waste is studied as well. First, basic physical and thermal properties of granular PP random copolymer (PPR) and glass fiber reinforced PP (PPGF) aggregate are studied. For the developed composite mixtures, basic physical, mechanical, heat transport and storage properties are accessed. The obtained results show that the composites with incorporated PP aggregate exhibit an improved thermal insulation properties and acceptable mechanical resistivity. This new composite materials with enhanced thermal insulation function are found to be promising materials for buildings subsoil or floor structures.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JN - Civil engineering

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP105%2F12%2FG059" target="_blank" >GBP105/12/G059: Cumulative time dependent processes in building materials and structures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    THERMOPHYSICS 2016: 21ST INTERNATIONAL MEETING

  • ISBN

    978-0-7354-1410-5

  • ISSN

    0094-243X

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

  • Publisher name

    AIP Publishing, APL, the American Institute of Physics

  • Place of publication

    Melville, NY

  • Event location

    Terchová

  • Event date

    Oct 12, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000380816400033