All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Preparation of fine powdered composite for latent heat storage

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00301100" target="_blank" >RIV/68407700:21110/16:00301100 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4955237" target="_blank" >http://dx.doi.org/10.1063/1.4955237</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4955237" target="_blank" >10.1063/1.4955237</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Preparation of fine powdered composite for latent heat storage

  • Original language description

    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particle size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cementbased matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JN - Civil engineering

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-22909S" target="_blank" >GA14-22909S: Investigation of application of phase change materials in energy-storage plasters</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    THERMOPHYSICS 2016: 21ST INTERNATIONAL MEETING

  • ISBN

    978-0-7354-1410-5

  • ISSN

    0094-243X

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

  • Publisher name

    AIP Publishing, APL, the American Institute of Physics

  • Place of publication

    Melville, NY

  • Event location

    Terchová

  • Event date

    Oct 12, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000380816400009