All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Simultaneous thermal analysis and thermodilatometry of hybrid fiber reinforced UHPC

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00312762" target="_blank" >RIV/68407700:21110/17:00312762 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4994513" target="_blank" >http://dx.doi.org/10.1063/1.4994513</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4994513" target="_blank" >10.1063/1.4994513</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Simultaneous thermal analysis and thermodilatometry of hybrid fiber reinforced UHPC

  • Original language description

    Development of concrete technology and the availability of variety of materials such as silica fume, mineral microfillers and high-range water-reducing admixtures make possible to produce Ultra-High Performance Concrete (UHPC) with compressive strength higher than 160 MPa. However, UHPC is prone to spall under high temperatures what limits its use for special applications only, such as offshore and marine structures, industrial floors, security barriers etc. The spalling is caused by the thermal stresses due to the temperature gradient during heating, and by the splitting force owing to the release of water vapour. Hybrid fibre reinforcement based on combination of steel and polymer fibres is generally accepted by concrete community as a functional solution preventing spalling. In this way, Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) is produced possessing high mechanical strength, durability and resistance to water and salt ingress. Since UHPFRC find use in construction industry in tunnel linings, precast tunnel segments, and high-rise buildings, its behaviour during the high-temperature exposure and its residual parameters are of the particular importance. On this account, Simultaneous Thermal Analysis (STA) and Thermodilatometry Analysis (TDA) were done in the paper to identify the structural and chemical changes in UHPFRC during its high-temperature load. Based on the experimental results, several physical and chemical processes that studied material underwent at hightemperatures were recognized. The obtained data revealed changes in the composition of the studied material and allowed identification of critical temperatures for material damage.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

    <a href="/en/project/GA15-05791S" target="_blank" >GA15-05791S: Analysis of physical and chemical processes in hybrid-fiber reinforced high performance cement-based composites induced by high-temperature loading</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    THERMOPHYSICS 2017: 22nd International Meeting of Thermophysics 2017 and 4th Meeting of EnRe 2017

  • ISBN

    978-0-7354-1546-1

  • ISSN

  • e-ISSN

    1551-7616

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    American Institute of Physic AIP

  • Place of publication

    Santa Fe

  • Event location

    Těrchová

  • Event date

    Sep 12, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000426600400038