To fire resistance of the steel and fibre-reinforced concrete circular hollow section column
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00313128" target="_blank" >RIV/68407700:21110/17:00313128 - isvavai.cz</a>
Result on the web
<a href="http://www.mace.manchester.ac.uk/our-research/seminars/asfe/" target="_blank" >http://www.mace.manchester.ac.uk/our-research/seminars/asfe/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
To fire resistance of the steel and fibre-reinforced concrete circular hollow section column
Original language description
Technology of production and transport of the steel fibre-reinforced concrete enables its utilization in composite steel-concrete structures. This research is focused on development of mechanical behaviour and design model of circular hollow section (CHS) composite steel and fibre-concrete (SFRC) column at elevated temperature. Presented work includes two levels accuracy/complexity, allowing simplified or advanced approach to design following the coming changes in European standard for composite member design in fire, see EN1994-1-2:2005 (CEN 2005). Experimental investigations include mechanical tests of heated fibre-concrete samples in tension and compression, thermal behaviour under uniform and non-uniform loading of stubs of CHS and tests of full scale SFRC CHS columns in steady-state and transient-state regimes. Developing advanced finite element method (FEM) simulation of global mechanical behaviour of SFRC CHS columns is a multi-levelled composite mechanical and thermo-model and provide numerous numerical experiments. Together with standard steel material model in fire, FEM model of mechanical behaviour of fibre-reinforce concrete at elevated temperature is prepared. Validated simplified and advanced thermal model of SFRC CHS at elevated temperature gives temperature fields and moisture distribution inside section which depends on direction, heat flux, sizes and gives possibility to model different fire cases of full-scale columns in bending and buckling at elevated temperature. Prepared analytical and simplified FEM mechanical model of column is taking in account degradation of mechanical properties, analytical models of transfer of heat inside column section and provides simplified solutions for designers.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20101 - Civil engineering
Result continuities
Project
<a href="/en/project/GA15-19073S" target="_blank" >GA15-19073S: Models of steel and fibre concrete composite columns exposed to fire</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Applications of Fire Engineering
ISBN
978-1-138-09291-4
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
73-79
Publisher name
CRC Press/Balkema
Place of publication
Leiden
Event location
Manchester
Event date
Sep 7, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—