GLOBAL WEAK SOLUTIONS TO DEGENERATE COUPLED DIFFUSION-CONVECTION-DISPERSION PROCESSES AND HEAT TRANSPORT IN POROUS MEDIA
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00315819" target="_blank" >RIV/68407700:21110/17:00315819 - isvavai.cz</a>
Result on the web
<a href="https://ejde.math.txstate.edu/" target="_blank" >https://ejde.math.txstate.edu/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
GLOBAL WEAK SOLUTIONS TO DEGENERATE COUPLED DIFFUSION-CONVECTION-DISPERSION PROCESSES AND HEAT TRANSPORT IN POROUS MEDIA
Original language description
In this contribution we prove the existence of weak solutions to degenerate parabolic systems arising from the coupled moisture movement, transport of dissolved species and heat transfer through partially saturated porous materials. Physically motivated mixed Dirichlet-Neumann boundary conditions and initial conditions are considered. Existence of a global weak solution of the problem is proved by means of semidiscretization in time and by passing to the limit from discrete approximations. Degeneration occurs in the nonlinear transport coefficients which are not assumed to be bounded below and above by positive constants. Degeneracies in all transport coefficients are overcome by proving suitable a priori L1-estimates for the approximations of primary unknowns of the system.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the International Conference on Applications of Mathematics to Nonlinear Sciences, Kathmandu, Nepal, May 26-29, 2016. Electronic Journal of Differential Equations: Conference 24, 2017
ISBN
—
ISSN
1072-6691
e-ISSN
1072-6691
Number of pages
12
Pages from-to
11-22
Publisher name
Texas State University-San Marcos
Place of publication
San Marcos
Event location
Kathmandu
Event date
May 26, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—