All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rainwater propagation through snowpack during rain-on-snow sprinkling experiments under different snow conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00321337" target="_blank" >RIV/68407700:21110/17:00321337 - isvavai.cz</a>

  • Alternative codes found

    RIV/60460709:41330/17:74073

  • Result on the web

    <a href="http://dx.doi.org/10.5194/hess-21-4973-2017" target="_blank" >http://dx.doi.org/10.5194/hess-21-4973-2017</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5194/hess-21-4973-2017" target="_blank" >10.5194/hess-21-4973-2017</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rainwater propagation through snowpack during rain-on-snow sprinkling experiments under different snow conditions

  • Original language description

    The mechanisms of rainwater propagation and runoff generation during rain-on-snow (ROS) events are still insufficiently known. Understanding storage and transport of liquid water in natural snowpacks is crucial, especially for forecasting of natural hazards such as floods and wet snow avalanches. In this study, propagation of rainwater through snow was investigated by sprinkling experiments with deuterium-enriched water and applying an alternative hydrograph separation technique on samples collected from the snowpack runoff. This allowed us to quantify the contribution of rainwater, snowmelt and initial liquid water released from the snowpack. Four field experiments were carried out during winter 2015 in the vicinity of Davos, Switzerland. Blocks of natural snow were isolated from the surrounding snowpack to inhibit lateral exchange of water and were exposed to artificial rainfall using deuterium-enriched water. The experiments were composed of four 30 min periods of sprinkling, separated by three 30 min breaks. The snowpack runoff was continuously gauged and sampled periodically for the deuterium signature. At the onset of each experiment antecedent liquid water was first pushed out by the sprinkling water. Hydrographs showed four pronounced peaks corresponding to the four sprinkling bursts. The contribution of rainwater to snowpack runoff consistently increased over the course of the experiment but never exceeded 86 %. An experiment conducted on a non-ripe snowpack suggested the development of preferential flow paths that allowed rainwater to efficiently propagate through the snowpack limiting the time for mass exchange processes to take effect. In contrast, experiments conducted on ripe isothermal snowpack showed a slower response behaviour and resulted in a total runoff volume which consisted of less than 50% of the rain input.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10501 - Hydrology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Hydrology and Earth System Sciences

  • ISSN

    1027-5606

  • e-ISSN

    1607-7938

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    15

  • Pages from-to

    4973-4987

  • UT code for WoS article

    000412245400003

  • EID of the result in the Scopus database

    2-s2.0-85030461785