Conditions at interfaces of layered flow with intense bed load transport
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00325970" target="_blank" >RIV/68407700:21110/19:00325970 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Conditions at interfaces of layered flow with intense bed load transport
Original language description
Intense bed load transport in open channel flow is typically associated with a layered structure of the flow, in which individual layers exhibit different mechanisms of support and friction of transported sediment grains. In the lowermost layer adjacent to the channel bed, the grains slide over each other and maintain virtually permanent contact. In the uppermost layer below the water surface, typically no grains are transported. In the central layer, the grains collide with each other producing typical distributions of granular concentration and velocity across the collisional layer. Mathematical models describing the layered flow with intense bed load (as models based on kinetic theory of granular flows) consider flow conditions at interfaces of the individual layers in their flow predictions. Usually, experimental verification of interfacial predictions is lacking. We exploit results of our new experiments with plastic cylindrical sediment to identify a variation of the conditions at the interfaces (local interfacial granular concentrations and velocities) with varying flow discharge, depth and slope in a laboratory tilting flume. The experimental results include local granular concentration using an improved laser stripe method. The experiments are compared with predictions using our kinetic-theory based transport model with the aim to evaluate a match for experimentally-determined and model-predicted interfacial parameters.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20101 - Civil engineering
Result continuities
Project
<a href="/en/project/GA16-21421S" target="_blank" >GA16-21421S: Analysis of Granular-Liquid Channel Flows based on Kinetic Theory Approach</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
EFM18 – Experimental Fluid Mechanics 2018
ISBN
—
ISSN
2100-014X
e-ISSN
2100-014X
Number of pages
7
Pages from-to
374-380
Publisher name
EDP Sciences
Place of publication
Les Ulis Cedex A
Event location
Praha
Event date
Nov 13, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000504642200057