All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Risk to residents, infrastructure, and water bodies from flash floods and sediment transport

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00328978" target="_blank" >RIV/68407700:21110/19:00328978 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s10661-019-7216-7" target="_blank" >https://doi.org/10.1007/s10661-019-7216-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10661-019-7216-7" target="_blank" >10.1007/s10661-019-7216-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Risk to residents, infrastructure, and water bodies from flash floods and sediment transport

  • Original language description

    Intense rainfall-runoff events and subsequent soil erosion can cause serious damage to the infrastructure in residential areas in Europe countries and all over the world. In the Czech Republic, the Ministry of the Interior has supported an analysis dealing with the risks to residents, infrastructure, and water bodies from flash floods and sediment transport. A total of more than 150,000 risk points were identified by GIS morphology and land-use analysis. The threat, the vulnerability, and the resulting risk category were determined for each of these points. The WaTEM/SEDEM model was used to assess the threat with 10-m data resolution. The summarized vulnerability of real objects on individual runoff trajectories was combined with the threat of sediment transport, resulting in the overall risk represented by a 5-degree scale, from lowest (1) to highest (5). The output of the project lies stored in the WEB application. Nineteen percent of the sites in the Czech Republic, i.e., more than 23,000 sites, have been assigned to categories 4 and 5, with a high level of risk. Thirty-four percent of cadastral units are classified as the high risky (4416 cadasters, with a total area 24,707 km2). Approximately 30% of the population of the Czech Republic lives in high-risk cadastral areas. Four scenarios of protection were modeled. To reduce the high-risk and very high-risk sites (categories 4 and 5), the most effective solution is the implementation of technical measures or conversion to grassland within the contributing watersheds. This could reduce the number of high-risk sites from 23,400 to 3700. Methods of sediment transport modeling and risk evaluation, based on presented USLE input data and documented WaTEM/SEDEM model, can be used worldwide. Especially in post-soviet union countries with shared arable land development and erosion consequences.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20701 - Environmental and geological engineering, geotechnics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Environmental Monitoring and Assessment

  • ISSN

    0167-6369

  • e-ISSN

    1573-2959

  • Volume of the periodical

    2

  • Issue of the periodical within the volume

    191

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    19

  • Pages from-to

  • UT code for WoS article

    000456197100004

  • EID of the result in the Scopus database

    2-s2.0-85060152868