ANALYTICAL RELATIONS FOR DETERMINATION OF ROTATION STIFFNESS OF THE SEGMENT TUNNEL LINING LONGITUDINAL JOINT
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00331724" target="_blank" >RIV/68407700:21110/19:00331724 - isvavai.cz</a>
Result on the web
<a href="https://www.pspraha.cz/" target="_blank" >https://www.pspraha.cz/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ANALYTICAL RELATIONS FOR DETERMINATION OF ROTATION STIFFNESS OF THE SEGMENT TUNNEL LINING LONGITUDINAL JOINT
Original language description
The current trend of underground construction is tunnelling with full-profile tunnelling machines (so-called Shields a TBMs). Mechanized tunnelling allows the construction of underground structures in the case of very low overburden, in unstable rocks and below the groundwater level, with a minimal settlement of the terrain and influence of structures above the tunnel. In order to ensure the excavation and as a support for the tunnelling machine, a prefabricated concrete segmental lining, assembled under the shield, composed of rings formed by individual lining elements, is commonly used. Longitudinal joints between adjacent segments within a single ring divide the lining into physically separate parts. The question is whether the longitudinal joint can be modelled like an ideal hinge or ideally fixed joint in terms of transmission of the bending loading. However, the real stiffness lies somewhere between these two edge values of joint behaviour and depends primarily on the geometric arrangement, the magnitude of the normal force and the material parameters of the segment lining. How to implement the influence of longitudinal joints in a numerical model? One option is to use discrete semi-rigid elements inserted between individual segments. This paper presents derived analytical relations for determining the rotational stiffness of the longitudinal joint including the effect of its gradual opening and possible material non-linearity of concrete. All derived dependencies are correlated with the numerical calculation and their correctness is confirmed. At the end, a simplified approach for practical numerical modelling is introduced.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20101 - Civil engineering
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.
Data specific for result type
Article name in the collection
Underground Construction Prague 2019
ISBN
978-80-906452-3-3
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
Česká tunelářská asociace ITA-AITES
Place of publication
Praha
Event location
Praha
Event date
Jun 3, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—